翻訳と辞書
Words near each other
・ Orthogonal frequency-division multiplexing
・ Orthogonal functions
・ Orthogonal group
・ Orthogonal instruction set
・ Orthogonal matrix
・ Orthogonal polarization spectral imaging
・ Orthogonal polynomials
・ Orthogonal polynomials on the unit circle
・ Orthogonal Procrustes problem
・ Orthogonal symmetric Lie algebra
・ Orthogonal trajectory
・ Orthogonal transformation
・ Orthogonal wavelet
・ Orthogonality
・ Orthogonality (programming)
Orthogonality (term rewriting)
・ Orthogonality principle
・ Orthogonalization
・ Orthogonia
・ Orthogonia grisea
・ Orthogonia plana
・ Orthogonia plumbinotata
・ Orthogoniinae
・ Orthogonioptelum
・ Orthogoniosaurus
・ Orthogonius
・ Orthogonius acrogonus
・ Orthogonius acutangulus
・ Orthogonius adoriae
・ Orthogonius aemulus


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Orthogonality (term rewriting) : ウィキペディア英語版
Orthogonality (term rewriting)

Orthogonality as a property of term rewriting systems describes where the reduction rules of the system are all left-linear, that is each variable occurs only once on the left hand side of each reduction rule, and there is no overlap between them.
Orthogonal term rewriting systems have the consequent property that all reducible expressions (redexes) within a term are completely disjoint -- that is, the redexes share no common function symbol.
For example, the term rewriting system with reduction rules
: \rho_1\ :\ f(x, y) \rightarrow g(y)
: \rho_2\ :\ h(y) \rightarrow f(g(y), y)
is orthogonal -- it is easy to observe that each reduction rule is left-linear, and the left hand side of each reduction rule shares no function symbol in common, so there is no overlap.
Orthogonal term rewriting systems are confluent.


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Orthogonality (term rewriting)」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.